[In the foregoing correspondence, allusion is made to a prior knowiedge of the tea-plant of Assam. The following extract from Captain Wilcox's Memoir of a Survey of Assam, published in the Asiatic Researches XVJI. p. 448, proves that officer to have been aware of its existence in the hills east of Sadiya:-he writes from Manché, a Khamti village, latitude $27^{\circ} 29^{\prime} 16^{\prime \prime}$, longitude $97^{\circ} 29^{\prime}$: " according to promise, a specimen of the tea tree was brought to me from one of the neighbouring low hills; it was a full grown one, that is about five feet high ; the leaves were coarse and large, and not numerous." Mr. Scott and Captain Davidson had also frequently seen it, and the latter officer says, that black tea is now brought to Goalpara from the Bhotan hills. In 1828, Capts. Grant and Pemberton sent specimens of what the natives asserted to be the tea plant to Mr. Secretary Swinton, from Mánipur, but for want of the fruit, its genuine nature was not identified. These travellers made tea from its leaves, and found it approach very nearly in flavour to ordinary black tea.-ED.]

V.-Abstract of Meteorological Observations at Nasírabád. By Lieut.. Col. Thomas Oliver.

Table I.-Barometer reduced to 320. Temperature of the External Air, and resulting elevation above Calcutta.

Year and Month.	Barom. at 4 P.m.	Temp. of Air.	Elevation.	Year and Month.	Barom. at 4 P.s.	Temp. of air.	Eleva. tion.
		\bigcirc	Feet.			0	Feet.
Dec. 1832,	$28 \cdot 432$	$55 \cdot 7$	1461	Dec. 1833, ..	28.391	65.4	1518
Jan. 1833,	-504	71.4	1440	Jan. 1834, .	-402	$70 \cdot 0$	1511
Feb.	-392	74.5	1437	Feb.	-392	$76 \cdot 5$	1501
March,	-334	$84 \cdot 8$	1431	March,	$\cdot 281$	86.5	1538
April,	-234	96.9	1460	April,	-212	$93 \cdot 8$	1556
May,	-059	$102 \cdot 4$	1545	May,.	-101	$103 \cdot 8$	1512
June,	-031	$102 \cdot 2$	1518	June,	$27 \cdot 980$	101.0	1572
July,	$27 \cdot 965$	$97 \cdot 1$	1543	July,........	-977	88.1	1576
Aug.	28.021	$93 \cdot 9$	1543	Aug.	28.001	$88 \cdot 2$	153 \%
Sept.	-090	98.5	1507	Sept..........			
Oct.	-296	$93 \cdot 7$	1484	Oct.			
Nov.	-425	$80 \cdot 6$	1497	Nov.			
	28.232	88.5	1489				

It is remarkable that the elevations for the nine months, since December, 1833, are all with one exception so much in excess to those for the same months of the former year: I am at a loss to account for this; the average height of my Barometer for the nine months in question being only 026 lower than the average for the same months of the preceding year.
Table II.-Mean Temperature of each Month, with the Differences from the Mean of the Year.

Months.	Temp. Day.	Diff. from Mean.	Temp. Night.	Diff. from Mean.	Temp. Sun-set.	Diff. from Mean.
	0	0	0	0	0	0
January,	61.5	-17.9	57.9	- 17*4	66.0	- $15^{\circ} 8$
February,	$67 \cdot 8$	- 11.6	60.5	- 14.8	$67^{\circ} 7$	$-14^{\circ} 1$
March,...	$75 \cdot 4$	- 40	$71 \cdot 9$	- 3.4	80.7	- 1 I
April,	$85^{\circ} 2$	+ 5.8	80.9	+ 56	88.5	+ 6.7
May,	94.6	+ 15.2	89.9	+ 14.6	96.9	+ 151
June,	93.6	+ 14.2	88.8	+ 13.5	$94 \cdot 6$	+ 128
July, .	88.3	+ 8.9	$84 \cdot 7$	+ 9.4	88°	+ 6.2
August,	86.1	$1+6.7$	$82 \cdot 1$	+ 6.8	86.4	+ 4.6
September,	86.6	$1+72$	$83^{1} 1$	+ 7.8	$87 \cdot 7$	+
Octaber,	82.0	+ 26	78.0	+ 27	85.5	+ $+\quad 37$
November,	$72 \cdot 7$	- 67	69.6	- $5 \cdot 7$	$77 \cdot 1$	$4 \cdot 7$
December,	58.7	- 20.7	$55 \cdot 6$	- 197	63.0	- 18.8
Means,	$79^{*} 4$		$75 \cdot 3$		81.8	

Table III.-Temperature of the Air, and Depression (D) of Wet Thermometer.

Year and Month.	Sun-rise.		$2 \frac{1}{2} \mathrm{P}$. M.		4 P. M.		Sun-set.	
	Temp.	D.	Temp.	D.	Temp.	D.	Temp.	D.
	\bigcirc	-	0	0	-	0	0	\cdots
December, 1832,	$48^{\circ} 1$	$7 \cdot 6$	$71 \cdot 3$	$18 \cdot 6$	$65 \cdot 7$	14.3	64.5	$15 \cdot 4$
January, 1833,	$50 \cdot 4$	9.7	$73 \cdot 3$	$20 \cdot 0$	$71 \cdot 4$	$19 \cdot 1$	$66 \cdot 2$	16.7
February,	$52 \cdot 3$	$10 \cdot 4$	$76 \cdot 0$	$20^{\circ} 0$	74.5	$19^{\circ} 5$	$65^{\circ} 0$	$15 \cdot 5$
March,	$62 \cdot 7$	$13 \cdot 4$	$86 \cdot 7$	$27 \cdot 1$	$84 \cdot 8$	26^{-3}	$80^{\circ} 3$	$23 \cdot 6$
April,	$75 \cdot 3$	$20 \cdot 0$	98.8	$34 \cdot 2$	$96 \cdot 9$	$32 \cdot 9$	$89 \cdot 8$	$27 \cdot 9$
May,	$82 \cdot 7$	15.6	105.6	$34 \cdot 3$	102.4	$32 \cdot 6$	$96 \cdot 1$	$28 \cdot 2$
June,	81.9	12.1	104.8	$30 \cdot 0$	$102 \cdot 2$	$23 \cdot 6$	94.5	$23 \cdot 7$
July,	$82 \cdot 3$	$7 \cdot 5$	99.8	$23 \cdot 1$	$97 \cdot 1$	$19 \cdot 2$	91.5	$15 \cdot 7$
August,	78.5	6.4	$95 \cdot 3$	$19 \cdot 6$	$93 \cdot 9$	18.8	$89^{\circ} 0$	$15^{\prime} 3$
September,	$80 \cdot 9$	$11 \cdot 1$	$100 \cdot 3$	$25 \cdot 9$	$98 \cdot 5$	$25 \cdot 2$	$92 \cdot 6$	$22 \cdot 3$
October, . .	73.6	$15 \cdot 4$	$96 \cdot 5$	$30 \cdot 4$	$93 \cdot 7$	28.8	88.4	$25^{\circ} 9$
November	$62 \cdot 1$	$8 \cdot 2$	83.5	20.8	$80 \cdot 6$	$19 \cdot 3$	$77 \cdot 1$	$17 \cdot 4$
December,	$48 \cdot 5$	4.9	$67 \cdot 4$	13.6	$65 \cdot 4$	13.0	$61 \cdot 5$	$11 \cdot 1$
January, 1834,	$49 \cdot 0$	9.4	$73 \cdot 2$	$20 \cdot 8$	$70^{\circ} 0$	$19 \cdot 0$	$65 \cdot 7$	$17 \% 4$
February,	$54 \cdot 3$	$9 \cdot 0$	$78 \cdot 7$	$23 \cdot 4$	76.5	$22 \cdot 5$	$70 \cdot 4$	$17^{\circ} 8$
March, .	63.4	13.8	88.4	$28 \cdot 1$	86.5	27.2	$81 \cdot 1$	$23 \cdot 6$
A pril,	71.0	$16 \cdot 2$	96.8	$31 \cdot 8$	93.8	$30 \cdot 3$	S7.3	$26 \cdot 6$
May,	83.5	18.4	105.8	$36^{\circ} 6$	103.8	$35 \cdot 4$	$97 \cdot 6$	$31 \cdot 1$
June,	84.0	$12 \cdot 3$	104.1	$27 \cdot 8$	$101 \cdot 0$	$25 \cdot 5$	$94 \cdot 7$	$21 \cdot 9$
July,	80.8	$4 \cdot 4$	$90 \cdot 8$	$12 \cdot 8$	88.1	$10 \cdot 6$	84.5	$7 \cdot 3$
August,	$76 \cdot 9$	$3 \cdot 7$	$89^{\circ} 9$	$13 \cdot 1$	88.2	$12 \cdot 4$	$83 \cdot 8$	8.6
September,	$75 \cdot 9$	$2 \cdot 5$	$89^{\prime \prime}$	$12 \cdot 5$.	.	$82 \cdot 9$	$7 \cdot 6$
October..	$67 \cdot 4$	$5 \cdot 7$	89.4	$21^{\circ} 9$	\cdots	.	$82 \cdot 5$	$17 \cdot 4$

Table IV.-Dew Point (S), Comparative Tension (T), and Grains of Aqueous Vapour in a cubic foot of $\operatorname{Air}(\boldsymbol{G})$.

Year and Month.	S.	T.	G.	Year and Month.	S.	T.	G.
	0				${ }^{\circ}$		
Dec. 1832, ..	$32 \cdot 2$	-371	2.42	Dec. 1833,..	$40 \cdot 2$	-525	3.15
Jan. 1833,..	28.4	-294	$2 \cdot 11$	Jan. 1834, .	$27 \cdot 3$	-289	2.04
Feb.........	$32 \cdot 0$	-265	$2 \cdot 36$	Feb.	29.4	-261	$2 \cdot 15$
Mareh,	$28^{\circ} 0$	-189	2.03	March,	$30 \cdot 6$	-198	$2 \cdot 20$
April, .	$30 \cdot 0$	-139	$2 \cdot 11$	April,	$34 \cdot 7$	-180	2.52
May,	$30^{\circ} 0$	-110	2.08	May,	$41 \cdot 3$	-163	$3 \cdot 13$
June,	$59^{\circ} 0$	-326	$5 \cdot 66$	June,	$64 \cdot 3$	-382	$6 \cdot 69$
July,	$69 \cdot 5$	-500	$7 \cdot 93$	July,	$74 \cdot 3$	-694	9.37
Aug.	$67^{\circ} 7$	-531	$7 \cdot 50$	Aug.	71.9	-689	$8 \cdot 70$
Sept.	60.5	-373	5.96	Sept.	$72 \cdot 7$	$\cdot 722$	8.94
Oct...	$40 \cdot 5$	-212	$3 \cdot 03$	Oct.	$55 \cdot 4$	-459	$5 \cdot 17$
Nov.	$46 \cdot 4$	-401	$3 \cdot 87$	
Means,l	$43 \cdot 7$	-309	3.92	Means,	$45^{\circ} 2$	$\cdot 415$	$4 \cdot 91$

The means for the last year are probably but little affected by the want of observa. tions in November, since the hygrometric state of the air for that month appears to differ not very much from the mean of the year.
[The formula whence the dew-points in the above table are taken will be found in the first Volume of the Journal, p. 508, and in the Gleanings in Science, $i_{\text {. }}$ 193.-ED.]

Mear Results of four Years' Observations.

Months.	Barometerat 32^{0}		Temperature. of Air.		Mean Temperature.		S.	T.	G.
	4 P. M.	var.	4 P. M.	var.	Day.	Night.			
	inches.		0		0	0	0		
January,	28.475	+.232	70.6	-17.0	60.9	57.5	31.6	. 550	2.36
February,	. 387	+.151	72.2	-11.4	66.4	59.0	34.9	. 368	2.66
March, ..	. 316	$+.080$	84.0	-4.4	73.5	70.5	34.9	. 265	2.66
April,....	. 224	-. 010	95.5	$+5.6$	83.6	81.5	37.4	. 194	2.80
May, 109	-. 127	101.8	+14.7	92.6	88.2	40.1	. 175	3.06
June,	27.997	-. 239	100.7	+14.6	92.5	$87 \cdot 7$	63.3	. 388	6.52
July,	. 974	-. 262	92.8	+9.6	87.5	83.8	71.7	. 604	8.60
August,	28.024	-. 212	88.8	+ 5.7	83.6	81.1	71.5	. 679	8.60
September,	. 137	- 099	90.9	+6.1	84.0	80.9	66.4	. 578	7.39
October,..	. 305	+. 069	90.2	+ 2.3	80.7	76.8	46.7	. 334	4.00
November,	. 431	+.195	79.3	-7.7	70.2	66.7	43.2	. 392	3.47
December,	. 451	+.215	67.3	-18.3	59.6	56.7	38.2	. 479	3.05
Means,	28.236	. 478	86.2	33.0	77.9	74.2	48.3	. 417	4.60

The mean temperature (day and night) from these four year's observations is 76°; but as Nasírabád is elevated above the level of the sea nearly 1500 feet, the air is or ought to be cooler on that account by about $5^{\circ} \cdot 5$, so that the temperature at the sea level would be $81 \cdot 5$, which is that assigned to the equator by Humboldt.

If we calculate the mean temperature for the latitude $\left(26^{\circ} 18^{\prime}\right)$ by the formulæ which have been found in most cases to agree well with observation, we shall have,

$$
\begin{aligned}
& \text { By Mayer's }, \text { T }\left(=84^{\circ}-52^{\circ} \sin ^{2} \text { L) }=73 \cdot 8\right. \\
& \text { Brewster's,.... T (= } 810.5 \cos . L \text {) }=73 \cdot 1 \\
& \text { Daubuisson's,.. T (}=27^{\mathrm{d}} \cos .^{2} \mathrm{~L} \text { in centesimal degrees*) } \ldots . .=71 \cdot 0 \\
& \text { Atkinson's,..... T (}=97^{\circ} 08 \cos ^{\frac{3}{2}} \mathrm{~L}-10^{00} 53 \text {) } \ldots \\
& \text { Mean }=72.5
\end{aligned}
$$

which is 9° less than the observations give when reduced to the sea level. But it must be observed with regard to the locality of Nasírabad that it stands on an arid rock on which scarcely any vegetation exists unless during the rainy season : this will no doubt account for a part of the difference. Mr. Atkinson in his elaborate paper on Astronomical and other Refractions, (vide Memoirs of the Royal Astronomical Society, 2nd volume,) considers that 4° may be deducted from the observed temperatures of "large extended plains:" allowing this, we have still 5° unaccounted for. However, on calculating by the same formulæ, the mean temperatures of several places in this country where observations have been made and recorded in this Journal, I find similar differences, part of which may very probably be owing to errors in the instruments used, as it is well known how great a difference exists in the thermometers manufactured for exportation to this country, no two of which are hardly ever found to agree in their indications, some differing several degrees from others. In the subjoined table, the latitudes and elevations of some of the places are given by rough estimation, not having at hand the means of ascertaining them accurately, but any probable errors in these estimations cannot affect the results materially. The difference of temperature due to elevation has been calculated by Mr. Atrinson's Formula, viz.

Required diff. in degrees $=\frac{h}{251+\frac{h}{200}}, h$ being the elevation in feet.

* Or, in Fahrenheit's Scale. . . $T=80^{\circ} 6-48^{00} 6 \sin { }^{9}$ L.

н 2

Comparison of Observed Mean Temperutures with those deduced from the Formula of Mayer, Brewster, Daubuisson, and Ateinson.

Places.	Latitude.	Height in feet.	Observed Mean Temperature.	Difference due to Elevation.	Obd. Mn. Temp. reduced to the sea level.	Mean Temp. by the Formulæ.	Difference be tween the calculated \& observed Mean Temperature.
	0		0	-	0	0	0
Gazipúr,	25.30	400	77.4	1.6	79.0	73.1	-5.9
Fattigurh,	27.20	600	75.6	2.4	78.0	71.6	-6.4
Seringapatam,	12.30	2412	77.1	9.2	86.3	80.6	-5.7
Nasírabád,....	26.18	1487	76.0	5.5	81.5	72.5	-9.0
Delhí,	28.27	800	73.4	3.1	76.5	70.7	-5.8
Calcutta,	22.50	100	78.1	0.4	78.5	75.0	-3.5
Landour,	30.20	7000	56.7	24.5	81.2	69.1	-12.1

VI.-Longitude of Nasírabăd by Lunar Transits and by Observations of Moon Cuiminating Stars.-By Lieut.-Col. Thomas Oliver.

By Lunar Transits.

Months.	Longitude.		Sums of Se conds.	Means.		
February 16th, 1831,.	H. M.	S.	44	H		
Ditto 22nd,.........	.. 59	10	114		..	57
March 21st,	.. 58	57	171		.	57
Ditto 22nd,	.- 59	12	243		..	61
September 14th,	58	52	295		.-	59
Ditto 15th,	58	47	342		..	
November 12th,	-. 59	21	423			60
Ditto 13th,	.. 59	05	488		..	61
February 8th, 1832,	-. 58	41	529		\cdots	59
Ditto 10th,	-. 59	07	596		.	60
March 9th,	- 59	12	668		.	61
Ditto 10th,	-. 59	00	728		.	
Ditto 12th,	-. 59	00	788		..	61
April 8th,	-. 59	07	855		.	61
May 7th,.	- 59	29	944		.	63
Ditto 9th,	58	50	994			62
June 6th,.	58	59	1053		..	
Ditto 7th,	-. 58	49	1102	..	.	61
October 1st,	- 58	50	1152	\cdots	.	61
November 1st,	- 59	09	1221	\cdots	.	61
Ditto 29th,	- 58	52	1273	.	.	61
March 1st, 1833,	- 59	09	1342	.	..	61
Ditto 28th,	- 59	05	1407			61
Ditto 30th,	-. 59	05	1472			61
Ditto 31st,	-. 59	04	1536		.	61
April 28th,	-. 58	57	1593		.	61
Ditto 29th,	- 59	16	1669			62
Ditto 30th,	. 59	18	1747			62
Nvember 17th,..	- 59	00	1807			62
Ditto 19th,	- 58	42	1849			62
Longitude by Lunar Transits,			-•	4	59	02

